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Abstract
Based on a gauge-invariant form of the electron propagation function, we
propose a formalism for QED which preserves its gauge-invariant character
when both photon and electron propagators are regularized with a sharp
momentum-cutoff procedure. Perturbation calculations of the regularized
fermion effective action functional of an external electromagnetic field are
given. We study radiative corrections induced by a momentum-cutoff vacuum
and derive the corresponding Ward–Takahashi identity. Several problems
encountered in an attempt of constructing a momentum-cutoff QED model
are discussed.

PACS numbers: 12.20.−m, 11.15.−q, 11.90.+t

1. Introduction

Historically, the sharp momentum-cutoff method is the oldest procedure which has been
used in QED in rendering the divergent loop integrals finite. In comparison with other
more sophisticated regularization techniques (Pauli–Villars or dimensional methods), it has
the advantage of relating the divergences to the short-distance behaviour of the theory and
providing a basis for investigating the renormalization theory by using Wilson’s approach [1].
Besides, this momentum-cutoff technique also exhibits practical significance in the studies
of the dynamical chiral symmetry breaking [2] and even in recent issues of the dynamical
electroweak symmetry breaking [3, 4]. However, the problem of gauge-invariance violation
arising in computing divergent integrals with this method has made an impression for most
people that the sharp momentum-cutoff procedure could not be used as an effective regulator
in a gauge field theory. In this paper, we shall show that the difficulty of preserving gauge
invariance of QED is not intrinsic to the sharp momentum-cutoff technique but can be overcome
by implementing a minor formal modification of the conventional formalism of QED.
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In addition to discussing a modified formalism of QED which admits a gauge-invariant
momentum cutoff, this paper has a further purpose to illustrate the possibilities of constructing
a momentum-cutoff QED model. According to the viewpoint prevailed in the modern quantum
field theory, regulators are considered as purely formal means for handling divergent integrals
in the renormalization procedure. Since all these divergent integrals will not appear in the
renormalized theory, it is commonly believed that the resulting theory should not depend
on the choice of the regulator if certain fundamental symmetries of the original theory have
been properly respected in the regularization stage. However, the sharp momentum-cutoff
regulator has a special feature that it enables us to make a realistic interpretation. In fact, from
the mathematical point of view, a sharp momentum-cutoff procedure is nothing but imposing a
boundary condition in the momentum space for all physical solutions. Thus, one could regard
the momentum cutoff as a physical cutoff and study its effects on QED results [5, 6]. In this
paper, we shall discuss a QED model which precludes all ultraviolet divergences by imposing
boundary conditions at a neighbourhood of the infinite point of a 3D momentum space.

To show the way in which a sharp momentum-cutoff procedure could preserve the gauge
invariance of QED theory, we consider the vacuum persistence amplitude in the presence of
an external electromagnetic field Aµ(x) which, according to the conventional formalism of
QED, can be expressed as a functional integral

〈0+|0−〉A =
∫

[da] exp{i(S[a] + W [A + a])}, (1.1)

where aµ(x) denotes the fluctuations of the quantized photon fields with the action

S[a] = −1

4

∫
d4x[∂µaν(x) − ∂νaµ(x)][∂µaν(x) − ∂νaµ(x)] (1.2)

and W [A] represents the fermion effective action defined by

eiW [A] =
∫

[dψ̄ dψ] exp

{
i
∫

d4xψ̄(x)(i∂/ + eA/(x) − m0)ψ(x)

}
. (1.3)

Since, in the momentum representation, a local gauge transformation of aµ has the form

aµ(k) → aµ(k) − ikµλ(k), (1.4)

we could restrict the gauge transformations to a subgroup G� defined by {λ(k) = 0 for
|k| � �} in the case that the functional integration on the right-hand side of equation (1.1) is
carried out on the momentum-cutoff photon fields a�

µ (a�
µ (k) ≡ aµ(k) for |k| < �, a�

µ (k) ≡ 0
for |k| � �). In other words, a sharp momentum-cutoff regularization of photon fields will not
destroy the gauge symmetry of the original theory. However, the gauge-invariance problem
does arise in calculating W [A] when one tries to regularize the fermion fields with a similar
momentum-cutoff procedure.

In fact, by neglecting an irrelevant constant, from equation (1.3) we derive (see
appendix D in [7])

W [A] = −eTr

{∫ 1

0
dλA/(x)SF[λA]

}
, (1.5)

where

SF[A] = (∂/ − ieA/(x) + im0)
−1 (with Feynman boundary conditions) (1.6)

is the Feynman electron propagator in an external field. Noting that, under the gauge
transformation Aµ(x) → Aµ(x) + ∂µλ(x), the Feynman propagator transforms as

SF[A] → eieλ(x)SF[A] e−ieλ(x), (1.7)
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it is not difficult to give a formal proof of the gauge invariance of the effective action W [A].
Nevertheless, the expression of W [A] given by equation (1.5) is mathematically ambiguous
because the operator

∫ 1
0 dλA/(x)SF[λA] is not a trace class operator on the Dirac field space

H. It follows that one must first regularize the propagator SF[A] so that the right-hand
side of equation (1.5) becomes a well-defined expression. A simplest way of regularizing
SF[A] is to restrict it in a momentum-cutoff Dirac field subspace H�{ψ�|ψ�(k) ≡ ψ(k) for
|k| < �,ψ�(k) ≡ 0 for |k| � �}. Then the regularized effective action has the form

WS�
[A] = −eTr

{∫ 1

0
dλA/(x)S�[λA]

}
, (1.8)

where S�[A] denotes the restriction of SF[A] on the momentum-cutoff subspace H�.

Unfortunately, the momentum-cutoff regularized effective action WS�
[A] is no more a gauge-

invariant functional since H� is not a gauge-invariant subspace of Dirac fields for the gauge
transformations in the subgroup G�.

This difficulty can easily be overcome by replacing the gauge-covariant propagator SF[A]
with a gauge-invariant propagator G[A]. In fact, if we define the gauge-invariant propagator
G[A] by [8]

〈x ′|G[A]|x〉 = e−ieχ(x ′,x)〈x ′|SF[A]|x〉 (1.9)

with

χ(x ′, x) =
∫ 1

0
Aµ(x + s(x ′ − x))(x ′ − x)µ ds, (1.10)

we can rewrite equation (1.5) in the form

W [A] = −e
∫

d4x tr

{∫ 1

0
dλA/(x)〈x|SF[λA]|x〉

}
= −e Tr

{∫ 1

0
dλA/(x)G[λA]

}
, (1.11)

where the symbol tr denotes the trace taken on Dirac spinor indices. By regularizing the
propagator G[A] instead of S[A], we obtain another momentum-cutoff regularized effective
action

WG�
[A] = −e Tr

{∫ 1

0
dλA/(x)G�[λA]

}
. (1.12)

Furthermore, we may define the transition amplitude for a momentum-cutoff vacuum as

〈0+|0−〉A� =
∫

[da�] exp{i(S[a] + WG�
[A + a])}, (1.13)

where the symbol
∫

d[a�] denotes a functional integration on the momentum-cutoff photon
fields a�

µ . It can be shown that both WG�
[A] and 〈0+|0−〉A� are well-defined gauge-invariant

functionals of an external electromagnetic field Aµ(x) and they provide us a basis for the study
of the momentum-cutoff model of QED.

In section 2, we study the perturbation expansions of two regularized versions of the
fermion effective action WS�

[A] and WG�
[A] and calculate the vacuum polarization functions

in second and fourth order. Section 3 presents a study of the radiative corrections induced by
the momentum-cutoff quantum vacuum fluctuations. An alternative form of Ward–Takahashi
identity which is valid for the momentum-cutoff vacuum has been derived. In section 4, we
discuss two topics related to the momentum-cutoff model of QED, namely gauge-invariant
formulation of quantized fermion field theory and Lorentz-invariance violation due to the
ultraviolet cutoff.
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2. Perturbation expansion of fermion effective action

We start by giving a perturbation expansion in the momentum representation for the Feynman
electron propagator SF[A]

〈p′|SF[A]|p〉 =
∫

d4x

∫
d4x ′〈x ′|SF[A]|x〉 expi(p′x ′−px)

=
∞∑

n=0

(ie)n

(2π)4(n−1)

∫
d4k1 · · ·

∫
d4knS

(n)
µ1···µn

(p; k1, . . . , kn)

×Aµ1(k1) · · · Aµn(kn)δ
(4)


p′ − p −

n∑
j=1

kj


 , (2.1)

where

S(n)
µ1···µn

(p; k1, . . . , kn) ≡ SF


p +

n∑
j=1

kj


 γµn

· · · SF(p + k1)γµ1SF(p) (2.2)

with SF(p) = i(p/+m0)

p2−m2
0+iε

. A similar perturbation expansion also exists for the gauge-invariant

propagator G[A]

〈p′|G[A]|p〉 =
∞∑

n=0

(ie)n

(2π)4(n−1)

∫
d4k1 · · ·

∫
d4knG

(n)
µ1···µn

(p; k1, . . . , kn)

×Aµ1(k1) · · · Aµn(kn)δ
(4)


p′ − p −

n∑
j=1

kj


 . (2.3)

To obtain an explicit expression of G(n)
µ1···µn

(p; k1, . . . , kn), we define the x-product A ◦ B of
two operators A and B on the Dirac field space H by

〈x ′, α|A ◦ B|x, β〉 = ∑
γ

〈x ′, α|A|x, γ 〉〈x ′, γ |B|x, β〉,

where α, β, γ denote the spinor indices. Since the function χ(x ′, x) given by equation (1.10)
defines an operator on H, 〈x ′, α|χ |x, β〉 = δαβχ(x ′, x), the p-representation of the x-product
of χ with an arbitrary operator B has the form

〈p′|χ ◦ B|p〉 = − i

(2π)4

∫
d4k

∫ 1

0
dsAµ(k)

(
∂

∂p′
µ

+
∂

∂pµ

)
〈p′ − k + sk|B|p + sk〉. (2.4)

Thus, from equations (1.9), (2.1) and (2.3), we obtain

G(n)
µ1···µn

(p; k1, . . . , kn)

=
n∑

m=0

im

m!

∫ 1

0
ds1 · · ·

∫ 1

0
dsm∂µ1 · · · ∂µm

S(n−m)
µm+1···µn


p +

m∑
j=1

sj kj ; km+1, . . . , kn


 ,

(2.5)

where ∂µ denotes ∂/∂pµ.
From equations (1.8) and (2.1), we obtain the perturbation expansion of the fermion

effective action WS�
[A] in the momentum representation, which has the form
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WS�
[A] = − e

(2π)8

∫
D(�)

d4p

∫
D(�)

d4p′
∫ 1

0
dλ tr{A/(p − p′)〈p′|SF[λA]|p〉}

=
∞∑

n=1

W
(n)
S�

[A], (2.6)

W
(n)
S�

[A] = i(ie)n

n(2π)4n

∫
d4k1 · · ·

∫
d4knA

µ1(k1) · · · Aµn(kn)δ
(4)


 n∑

j=1

kj




×
∫
D(�,kn)

d4p tr
[
S(n−1)

µ1···µn−1
(p; k1, . . . , kn−1)γµn

]
, (2.7)

where D(�) denotes a momentum-integration domain and D(�, k) = {p | p ∈ D(�) and
p − k ∈ D(�)}. Similarly, for the gauge-invariant effective action WG�

[A], we have

WG�
[A] =

∞∑
n=1

W
(n)
G�

[A],

W
(n)
G�

[A] = i(ie)n

n(2π)4n

∫
d4k1 · · ·

∫
d4knA

µ1(k1) · · · Aµn(kn)δ
(4)


 n∑

j=1

kj




×
∫
D(�,kn)

d4p tr
[
G(n−1)

µ1···µn−1
(p; k1, . . . , kn−1)γµn

]
. (2.8)

Now we should discuss the momentum-integration domains D(�) in more detail. We first
take the point of view that the restriction of the integration domain is due to a cutoff imposed
on the Dirac spinor fields. Let D(�),� ∈ (0,∞), be a closed region in the Minkowski
4-momentum space R4{pµ;µ = 0, 1, 2, 3} which satisfies the following conditions:

|p0|2 + |p|2 < �2 	⇒ p ∈ D(�), (2.9a)∫
D(�)

d4p
∣∣(p2 − m2

0 + iε
)−1∣∣ < +∞, (2.9b)

p ∈ D(�) 	⇒ −p ∈ D(�). (2.9c)

Condition (2.9b) is imposed to ensure that all the p-integrals appeared on the right-hand sides
of equations (2.6) and (2.8) against ultraviolet divergence. Since Lorentz invariance is not
compatible with condition (2.9b), the most natural cutoff is a 3D momentum cutoff with
rotational symmetry in a given inertial system (see [5, 6]). In the following, we shall denote
this particular cutoff by

D3(�) = R4{pµ | |p| < �}. (2.10)

In order to preserve Lorentz symmetry, one could consider another cutoff which is imposed
on the Euclidian 4-momenta obtained after a Wick rotation of the p0-axis, i.e. D(�) are closed
regions in the Euclidean 4-momentum space R4{pα;α = 1, 2, 3, 4} with p4 = −ip0. Then
we have a Lorentz-invariant cutoff of Euclidian 4-momenta which we shall denote as

D4(�) = R4{pα | |p| < �}, (2.11)

where |p|2 = |p|2 + p2
4 = −p2 is a Lorentz invariant. Since any sharp cutoff on the p0-axis

destroys the analyticity of all functions about p0, one would obtain wrong results in calculating
integrals on a p0-cutoff domain by using the Wick rotation technique. Thus, we should not
regard the Lorentz-invariant cutoff D4(�) as a cutoff imposed on the Dirac spinor fields.
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However, as a formal means of rendering the divergent integrals finite, this momentum-cutoff
regulator has been used in many cases for the studies of quantum field theory. In the following,
we shall use the cutoff D(�) in both senses (i.e. before or after the Wick rotation) and always
require it to satisfy conditions (2.9).

After having given a precise definition of the cutoff D(�), we now turn to deriving some
general properties of the momentum-cutoff regularized effective actions W

(n)
S�

[A] and W
(n)
G�

[A].
Introduce the symmetrized functions

S̄(n)
µ1···µn

(p; k1, . . . , kn) = (n!)−1
∑

π{1,...,n}
S(n)

µ1···µn
(p; k1, . . . , kn), (2.12)

Ḡ(n)
µ1···µn

(p; k1, . . . , kn) = (n!)−1
∑

π{1,...,n}
G(n)

µ1···µn
(p; k1, . . . , kn), (2.13)

where π{1, . . . , n} denotes all the permutations on the n-point set {(µj , kj ) | j = 1, . . . , n}.
For these symmetrized functions, we find the following identities (see the appendix for a
proof):

tr
[
S̄(n−1)

µ1···µn−1
(p; k1, . . . , kn−1)γµn

]
= (−1)n tr


S̄(n−1)

µ1···µn−1


−p −

n−1∑
j=1

kj ; k1, . . . , kn−1


 γµn


 , (2.14)

tr
[
Ḡ(n−1)

µ1···µn−1
(p; k1, . . . , kn−1)γµn

]
= (−1)n tr


Ḡ(n−1)

µ1···µn−1


−p −

n−1∑
j=1

kj ; k1, . . . , kn−1


 γµn


 , (2.15)

inkµS̄(n)
µµ1···µn−1

(p; k, k1, . . . , kn−1) = S̄(n−1)
µ1···µn−1

(p + k; k1, . . . , kn−1)

− S̄(n−1)
µ1···µn−1

(p; k1, . . . , kn−1), (2.16)

k
µ1
1 Ḡ(n)

µ1···µn
(p; k1, . . . , kn) = 0. (2.17)

Then we obtain the following.

Proposition 1. W
(2n+1)
S�

[A] = W
(2n+1)
G�

[A] = 0,∀n = 0, 1, . . . (Furry’s theorem).

Proposition 2. W
(n)
G�

[A], n = 1, 2, . . . , are gauge-invariant functionals of Aµ.

Proposition 3. For n > 4, lim�→∞ W
(n)
S�

[A] = lim�→∞ W
(n)
G�

[A] = W(n)[A] exist. They are
both gauge invariant and Lorentz invariant.

Proposition 1 can easily be derived from the identities (2.14), (2.15) if we note that from
(2.9c) we have p ∈ D(�, kn) 	⇒ −p + kn ∈ D(�, kn). Proposition 2 is a direct consequence
of (2.17). For a proof of proposition 3, we note that the p-integrals for S(n)

µ1···µn
(p; k1, . . . , kn)

and G(n)
µ1···µn

(p; k1, . . . , kn) converge if n > 3 and therefore independent of the regularization
procedure. Besides, from equations (2.1) and (2.5), we see that the difference between
two types of functions S(n)(p) and G(n)(p) has the form ∂µF (p), which yield vanishing
contributions after p-integration when n > 3.

In the following, we shall calculate W
(n)
S�

[A] and W
(n)
G�

[A] for n � 4 and study their
asymptotic behaviour when � → ∞, in particular the effects caused by different modes of
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the momentum-cutoff procedure. To this end, we rewrite the effective action W
(n)
G�

[A] in the
form

W
(n)
G�

[A] = 1

n(2π)4

∫
d4k1 · · ·

∫
d4knA

µ1(k1) · · · Aµn(kn)δ
(4)


 n∑

j=1

kj


 K�

µ1···µn
(k1, . . . , kn),

(2.18)

where we have introduced the symmetrized gauge-invariant vacuum polarization functions

K�
µ1···µn

(k1, . . . , kn) = i(ie)n

(2π)4(n−1)n!

∑
π{1,...,n}

×
∫
D(�,kn)

d4p tr
[
G(n−1)

µ1···µn−1
(p; k1, . . . , kn−1)γµn

]
, (2.19)

so that the vacuum polarization current density can be expressed as

Jµ(k,A) = −(2π)4 δWG�
[A]

δAµ(−k)
= −

∞∑
n=0

∫
d4k1 · · ·

∫
d4knK

�
µµ1···µn

(−k, k1, . . . , kn)

×Aµ1(k1) · · · Aµn(kn)δ
(4)


k −

n∑
j=1

kj


 . (2.20)

Furthermore, we write K�
µ1···µn

(k1, . . . , kn) as a sum of an ordinary term and a gauge-correction
term

K�
µ1···µn

(k1, . . . , kn) = ��
µ1···µn

(k1, . . . , kn) + ��
µ1···µn

(k1, . . . , kn), (2.21)

where

��
µ1···µn

(k1, . . . , kn) = i(ie)n

(2π)4(n−1)n!

∑
π{1,...,n}

×
∫
D(�,kn)

d4p tr
[
S(n−1)

µ1···µn−1
(p; k1, . . . , kn−1)γµn

]
, (2.22)

��
µ1···µn

(k1, . . . , kn) = i(ie)n

(2π)4(n−1)n!

∑
π{1,...,n}

n−1∑
m=1

im

m!

∫ 1

0
ds1 · · ·

∫ 1

0
dsm

×
∫
D(�,kn)

d4p∂µ1 · · · ∂µm
tr


S(n−m−1)

µm+1···µn−1


p +

m∑
j=1

sj kj ; km+1, . . . , kn−1


 γµn


.

(2.23)

2.1. Calculation of W
(2)
S�

[A] and W
(2)
G�

[A]

From equations (2.22) and (2.23), we obtain

��
µν(−k, k) = −ie2

2(2π)4

{∫
D(�,k)

d4p tr[SF(p − k)γµSF(p)γν]

+
∫
D(�,−k)

d4p tr[SF(p + k)γµSF(p)γν]

}
, (2.24)
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��
µν(−k, k) = i e2

2(2π)4

∫ 1

0
ds

{∫
D(�,k)

d4p tr[SF(p − sk)γµSF(p − sk)γν]

+
∫
D(�,−k)

d4p tr[SF(p + sk)γµSF(p + sk)γν]

}
. (2.25)

To study the asymptotic behaviour of the polarization function K�
µν(−k, k), we write SF(p+q)

appearing on the right-hand sides of equations (2.24) and (2.25) in a power series of q,

SF(p + q) = SF(p) + S
(1)
F (p, q) + S

(2)
F (p, q) + O(q3), (2.26)

where

S
(1)
F (p, q) = iq/ − 2(qp)SF(p)

p2 − m2
0

, (2.27)

S
(2)
F (p, q) = 4(qp)2SF(p) − 2i(qp)q/(

p2 − m2
0

)2 − q2SF(p)

p2 − m2
0

. (2.28)

By implementing the expansion (2.26), it can clearly be seen that the zeroth and first degree
terms in ��

µν(−k, k) and ��
µ(−k, k) cancel out completely so that the remaining terms in

K�
µν(−k, k) are at most logarithmically divergent. Furthermore, we can now safely replace

the integration domain D(�, k) in the expression of K�
µν(−k, k) with D(�), because for

logarithmically divergent integrals the error produced by this replacement is of the order
O(�−1). Thus, the polarization function can be written as

K�
µν(−k, k) = �(2)

µν (�, k) + �(2)
µν (�, k) + �R

µν(k) + �R
µν(k) + O(�−1), (2.29)

where

�(2)
µν (�, k) = −ie2

(2π)4

∫
D(�)

d4p tr
[
S

(2)
F (p, k)γµSF(p)γν

]
, (2.30)

�(2)
µν (�, k) = ie2

3(2π)4

∫
D(�)

d4p tr
[
S

(1)
F (p, k)γµS

(1)
F (p, k)γν + 2S

(2)
F (p, k)γµSF(p)γν

]
(2.31)

and �R
µν(k) and �R

µν(k) denote the second degree remainders in the Taylor expansion of
��

µν(−k, k) and ��
µ(−k, k), respectively. Since the expansion coefficients of these remainder

functions are all expressed with convergent integrals, �R
µν(k) and �R

µν(k) are independent of
the regulator used in calculation. In fact, our result agrees with the well-known form of the
renormalized polarization function derived from the conventional QED formalism, i.e.

�R
µν(k) = 0, �R

µν(k) = (k2gµν − kµkν)�
c(k2) with �c(0) = 0. (2.32)

On the other hand, the second degree terms �(2)
µν (�, k) and �(2)

µν (�, k) do depend on the
regulator. Let

�div
µυ(�, k) = �(2)

µν (�, k) + �(2)
µν (�, k). (2.33)

Then the polarization function has the form

K�
µν(−k, k) = �div

µν(�, k) + (k2gµν − kµkν)�
c(k2) + O(�−1). (2.34)
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Simple trace calculations show that

�div
µυ(�, k) = 8ie2

3(2π)4

∫
D(�)

d4p

{
k2gµν − kµkν(

p2 − m2
0

)2 − (pk)2gµν − (pk)(pµkν + kµpν) + k2pµpν(
p2 − m2

0

)3

}
.

(2.35)

If we use the Lorentz-invariant cutoff, i.e. let D(�) = D4(�), we obtain

�div
µυ(�, k) = �(�)(k2gµν − kµkν), (2.36)

with

�(�) = − e2

12π2

[
ln

�2

m2
0

− 1

2

]
+ O(�−1). (2.37)

However, if we use the cutoff D3(�) as our regulator, the divergent term �div
µυ(�, k) will no

more be a Lorentz tensor. Let us specify the inertial system in which D3(�) is implemented
with a timelike unit vector nµ, then we have

�div
µυ(�, k) = �′(�)(k2gµν − kµkν) + δ�div

µυ(�, k), (2.38)

where

�′(�) = − e2

12π2

[
ln

�2

m2
0

+ 2 ln 2 − 4

3

]
+ O(�−1), (2.39)

δ�div
µν (�, k) = a[k2nµnν + (kn)2gµν − (kn)(kµnν + kνnµ)],

with a = e2

36π2
+ O(�−1). (2.40)

We shall use the term ’Lorentz anomaly’ to denote the violation of Lorentz invariance caused
by the ultraviolet cutoff in a momentum-cutoff model of quantum field theory and discuss the
related problems in section 4.

2.2. Calculation of W
(4)
S�

[A] and W
(4)
G�

[A]

Since ��
µ1µ2µ3µ4

(k1, k2, k3, k4) and ��
µ1µ2µ3µ4

(k1, k2, k3, k4) contain at most logarithmically
divergences, we could replace the momentum-integration domain D(�, k) with D(�), i.e.

��
µ1µ2µ3µ4

(k1, k2, k3, k4) = ie4

(2π)124!

∑
π{1,...,4}

×
∫
D(�)

d4p tr
[
S(3)

µ1µ2µ3
(p; k1, k2, k3)γµ4

]
+ O(�−1), (2.41)

��
µ1µ2µ3µ4

(k1, k2, k3, k4) = ie4

(2π)124!

∑
π{1,...,4}

∫
D(�)

d4p

3∑
m=1

im

m!

∫ 1

0
ds1 · · ·

∫ 1

0
dsm

× ∂µ1 · · · ∂µm
tr


S(3−m)

µm+1···µ3


p +

m∑
j=1

sj kj ; km+1, . . . , k3


 γµ4


 + O(�−1).

(2.42)

From
∂

∂(kj )µ
��

µ1µ2µ3µ4
(k1, k2, k3, k4) = O(�−1), j = 1, 2, 3, 4, (2.43)
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and noting that for k1 = k2 = k3 = k4 = 0 the terms on the right-hand side of equation (2.42)
with m = 1 and m = 2 cancel out, we obtain

��
µ1µ2µ3µ4

(k1, k2, k3, k4) = −ie4

(2π)124!

∑
π{1,...,4}

×
∫
D(�)

d4p tr
[
S(3)

µ1µ2µ3
(p; 0, 0, 0)γµ4

]
+ O(�−1). (2.44)

Thus, the fourth rank gauge-invariant polarization function has the familiar form [9]

K�
µ1µ2µ3µ4

(k1, k2, k3, k4)

= ��
µ1µ2µ3µ4

(k1, k2, k3, k4) − ��
µ1µ2µ3µ4

(0, 0, 0, 0) + O(�−1), (2.45)

which converges when � → ∞ and therefore is independent of the cutoff mode.
From the foregoing discussion, we conclude the following.

(1) The momentum-cutoff regularized fermion effective action WG�
[A] is a gauge-invariant

functional of Aµ and obeys Furry’s theorem.
(2) When � → ∞, all the perturbation expansion coefficients of WG�

[A], except the
logarithmically divergent term �div

µυ(�, k) contained in the second-order coefficient
K�

µν(−k, k), converge and agree with the conventional results obtained by using Pauli–
Villars or dimensional regulators. On the other hand, we found that the asymptotic
behaviour of �div

µυ(�, k) is dependent on the cutoff mode D(�).

(3) In the modern QED theory, this divergent term should be cancelled out via a charge
renormalization procedure. If we use the Lorentz-invariant cutoffD4(�) in the calculation
of �div

µυ(�, k), there will be no problem in implementing the conventional renormalization
procedure. However, if we want to use a 3D momentum cutoff such as D3(�), an
additional finite term of non-Lorentz-covariant character appears in �div

µυ(�, k), which
brings about new problems to the renormalization procedure.

3. Radiative corrections and Ward–Takahashi identity

In this section, we consider the radiative corrections due to the quantum fluctuations of virtual
photons and electron–positron pairs in a momentum-cutoff vacuum. As we have shown in
the introduction, for a momentum-cutoff vacuum, the vacuum persistence amplitude in the
presence of an external electromagnetic field is assumed to be given by equation (1.13).
Denoting the vacuum expectation of an arbitrary functional F [A] by F ′[A], we have

F ′[A] = 1

〈0+|0−〉A�

∫
[da�]F [A + a] exp{i(S[a] + WG�

[A + a])}. (3.1)

The functional integral on the right-hand side of equation (3.1) can be evaluated with the
Faddeev–Popov procedure by specifying a gauge, which leads to [7]

F ′[A] = eD̂�{F [A] eiWG�
[A]}

eD̂�{eiWG�
[A]} , (3.2)

where D̂� denotes a bilinear functional derivative operator

D̂� = (2π)4

2

∫
D(�)

d4kD
µν

F (k)
δ

δAµ(k)

δ

δAν(−k)
(3.3)

and D
µν

F (k) the photon propagator in the specified gauge. Thus, by taking account of the
radiative corrections in a momentum-cutoff vacuum, the electron propagator in the presence
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of an external field should has the form

S ′
F[A] = eD̂�{SF[A] eiWG�

[A]}
eD̂�{eiWG�

[A]} . (3.4)

To show the effects of the momentum cutoff on radiative corrections, here we calculate
the electron self-energy by making use of equation (3.4). In the absence of external field, the
one-loop approximation of the electron propagator has the form

S ′
F[A]|A=0 = (1 + D̂� + · · ·)SF[A]|A=0. (3.5)

Equation (3.5) can be written in the momentum representation, which reads

〈p′|S ′
F[A]|p〉|A=0 = (2π)4δ(4)(p′ − p)S ′

F(�, p)

= (2π)4δ(4)(p′ − p)[SF(p) − iSF(p)�(�, p)SF(p) + · · ·], (3.6)

where

�(�,p) = i(ie)2

2(2π)4

∫
D(�)

d4kD
µν

F (k)[γµSF(p − k)γν + γνSF(p + k)γµ]. (3.7)

We use the photon propagator in the Feynman gauge and add a small photon mass µ to
regularize the infrared divergence, then equation (3.7) has the form

�(�,p) = 2ie2

(2π)4

∫
D(�)

d4k
p/ + k/ − 2m0[

(p + k)2 − m2
0 + iε

]
(k2 − µ2 + iε)

. (3.8)

What is of interest here is the dependence of the asymptotic behaviour of �(�,p) on the
momentum-cutoff mode. Note that the integration of k has been restricted on D(�) so that
one should be especially cautious in calculating the linearly divergent part of the integral in
equation (3.8). In fact, when we use the Lorentz-invariant cutoff D4(�), the result obtained
is the same as that using the Pauli–Villars cutoff,

�D4(�, p) = e2

8π2

{∫ 1

0
ds[2m0 − (1 − s)p/] ln

�2

sm2
0 − s(1 − s)p2 + (1 − s)µ2

+
1

4
p/ − 2m0

}
+ O(�−1), (3.9)

while when we use the cutoff D3(�) in an inertial system specified by nµ, we obtain

�D3(�, p) = e2

8π2

{∫ 1

0
ds[2m0 − (1 − s)p/] ln

�2

sm2
0 − s(1 − s)p2 + (1 − s)µ2

+

(
2

3
− ln 2

)
p/ − 4(1 − ln 2)m0 +

1

3
(pn)(γ n)

}
+ O(�−1). (3.10)

By comparing these two results, we see that besides the meaningless finite shifts of the mass
and wavefunction renormalization constants, the 3D momentum cutoff D3(�) also produces
a non-Lorentz-covariant term within the self-energy part �(�,p), which could be recognized
as

δ�(p) = e2

24π2
(pn)(γ n). (3.11)

Furthermore, we also expect that there will be a Lorentz anomalous term in one-loop
vertex correction if we use the D3(�) cutoff procedure. In fact, in an external field, the vertex
operator is related to the electron propagator by the formula

�µ(k,A) = i(2π)4

e

δ

δAµ(k)
(S ′

F[A])−1. (3.12)
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Since

〈p′|(S ′
F[A])−1)|p〉|A=0 = (2π)4δ(4)(p′ − p)S ′−1

F (�, p), (3.13)

we have

〈p′|�µ(k,A)|p〉|A=0 = − i(2π)4

e
S ′−1

F (�, p′) 〈p′| δS
′
F[A]

δAµ(k)
|p〉

∣∣∣∣
A=0

S ′−1
F (�, p). (3.14)

By making use of the one-loop approximation,

S ′−1
F (�, p) = S−1

F (p) + i�(�,p) + · · · , (3.15)

〈p′| δS
′
F[A]

δAµ(k)
|p〉

∣∣∣∣
A=0

= ie δ(4)(p′ − p − k)

[
S(1)

µ (p; k)

− 3e2

(2π)4

∫
D(�)

d4qDνλ
F (q)S̄

(3)
µνλ(p; k, q,−q) + · · ·

]
, (3.16)

we obtain

〈p′|�µ(k,A)|p〉|A=0 = (2π)4δ(4)(p′ − p − k)[γµ + �µ(�;p + k, p) + · · ·], (3.17)

where

�µ(�;p′, p) = − e2

(2π)4

∫
D(�)

d4qDνλ
F (q)γνSF(p

′ + q)γµSF(p + q)γλ. (3.18)

Now we separate out the ultraviolet divergent part of �µ(�;p′, p) and write

�µ(�;p′, p) = �div
µ (�) + �c

µ(p′, p) + O(�−1), (3.19)

where

�div
µ (�) = �µ(�;p, p)|p/=m0

= 4ie2

(2π)4

∫ 1

0
s ds

∫
D(�)

d4q
(p/ + q/)γµ(p/ + q/) + m2

0γµ − 4m0(pµ + qµ)[
(q + sp)2 + s(1 − s)p2 − sm2

0 − (1 − s)µ2
]3

∣∣∣∣∣
p/=m0

.

(3.20)

When we use the D3(�) cutoff, we obtain

�div
µ [D3(�)] = e2

8π2

{∫ 1

0
s ds

[
ln

4�2

s2m2
0 + (1 − s)µ2

+
(s2 + 2s − 2)m2

0

s2m2
0 + (1 − s)µ2

]
γµ

− 7

6
γµ − 1

3
(nγ )nµ

}
+ O(�−1). (3.21)

With a little manipulation of the result given by equation (3.10), it is straightforward to verify
the Ward identity

�div
µ [D3(�)] = − ∂�D3(�, p)

∂pµ

∣∣∣∣
p/=m0

. (3.22)

Finally, we turn to derive the Ward–Takahashi identity valid for an arbitrary momentum-
cutoff vacuum. We note that, from equation (2.1) and the identity (2.16), it follows that

ikµ δ

δAµ(k)
〈p′|SF[A]|p〉 = ie

(2π)4
{〈p′|SF[A]|p + k〉 − 〈p′ − k|SF[A]|p〉}. (3.23)
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After taking account of the radiative corrections due to quantum fluctuations in a
momentum-cutoff vacuum, equation (3.23) has the form

ikµ δ

δAµ(k)
〈p′|S ′

F[A]|p〉 = ie

(2π)4
{〈p′|S ′

F[A]|p + k〉 − 〈p′ − k|S ′
F[A]|p〉}. (3.24)

By making use of equation (3.24), we derive from equation (3.14) the Ward–Takahashi
identity

−ikµ〈p′|�µ(k,A)|p〉|A=0 = (2π)4δ(4)(p′ − p − k)
[
S ′−1

F (�, p + k) − S ′−1
F (�, p)

]
. (3.25)

4. Discussion and summary

In the introduction, we have proposed to use equation (1.13) as a basis for constructing a
momentum-cutoff model of QED which could preclude the ultraviolet divergence while still
preserving the gauge invariance of QED. However, to realize this aim, one has to face the
following two problems.

The first problem is about the formalism of fermion fields. As we have shown in this paper,
an essential step which enables us to preserve gauge invariance is to implement a momentum
cutoff on a gauge-invariant electron propagator rather than on a gauge-covariant electron
propagator. Perhaps, it is more reasonable to first develop a gauge-invariant formulation of
fermion fields, regularize it by a momentum cutoff and then implement the quantization. In
an earlier work, the author has studied a gauge-invariant Hamiltonian formalism for spinor
electrodynamics [10], where the basic state variables used for describing fermions are gauge-
invariant bilinear forms of Dirac fields. We hope that, by implementing a quantization
procedure in such a formalism, we would obtain an effective action of fermion just like what
we have assumed in equation (1.12).

The next problem we have to face is the violation of Lorentz symmetry due to a 3D
momentum ultraviolet cutoff. It is obvious that there will be Lorentz-invariance violation
when a momentum cutoff such as D3(�) has been imposed on all the fields. But the real
trouble arises only if the Lorentz-invariance violation survives after the regulator is removed
(i.e. after � → ∞). In fact, the calculation of a logarithmically divergent Lorentz-covariant
integral with the D3(�) cutoff will generally yield, besides a Lorentz-covariant divergent term,
a non-Lorentz-covariant finite term. We shall call these non-Lorentz-covariant terms resulted
from the ultraviolet cutoff as Lorentz anomalies.

In equations (2.40), (3.11) and (3.21), we have shown the QED Lorentz anomalies in the
one-loop approximation for photon self-energy, electron self-energy and vertex correction,
respectively. Since these anomalous terms have no obvious physical meaning, it seems
that they bring about new troubles into the generally accepted QED renormalization theory.
However, we note that these three anomalous terms are supplementary terms associated with
the renormalization constants Z3, Z2 and Z1, respectively, and therefore can be cancelled by
adding extra counter terms in the QED Lagrangian. Further works are needed to show whether
we could achieve a complete cancellation of the Lorentz anomalies in a 3D momentum-cutoff
model of QED via a renormalization procedure. If we could find such a renormalization
procedure, the Lorentz symmetry will be restored in the renormalized theory.

In summary, we have developed in this paper a formalism for QED which preserves gauge
invariance when photon and electron propagators are regularized with a sharp momentum-
cutoff procedure. When the cutoff is implemented on the Euclidean 4-momentum space,
Lorentz symmetry can be preserved so that the momentum-cutoff procedure could be used as
a convenient gauge-invariant regulator. We have also discussed the viewpoint which treats the
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momentum cutoff as a real cutoff imposed on the fields rather than a temporary measure in the
procedure of renormalization. It was shown that when a logarithmically divergent Lorentz-
covariant integral is regularized with a 3D momentum cutoff, a finite non-Lorentz-covariant
term may show up as a by-product of the ultraviolet divergence.
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Appendix

The identities (2.14) and (2.15) may be derived from∫ 1

0
ds1 · · ·

∫ 1

0
dsm tr


S(n−m)

µm+1···µn


p +

m∑
j=1

sj kj ; km+1, . . . , kn


 γµ




= (−1)n−m+1
∫ 1

0
ds1 · · ·

∫ 1

0
dsm

× tr


S(n−m)

µm+1···µn


−p −

m∑
j=1

sj kj ;−km+1, . . . ,−kn


 γµ




= (−1)n−m+1
∫ 1

0
ds1 · · ·

∫ 1

0
dsm

× tr


S(n−m)

µn···µm+1


−p −

n∑
j=1

kj +
m∑

j=1

sj kj ; kn, . . . , km+1


 γµ


 . (A.1)

It is easy to verify the identity (2.16) for the case n = 1. We use induction to give a proof
for the cases n > 1. From definitions (2.2) and (2.12), we may write

S̄(n+1)
µµ1···µn

(p; k, k1, . . . , kn) = 1

n + 1

[
S̄(n)

µ1···µn
(p + k; k1, . . . , kn)γµSF(p)

+
n∑

j=1

S̄
(n)
µµ1···µ̌j ···µn

(p + kj ; k, k1, . . . , ǩj , . . . , kn)γµj
SF(p)

]
, (A.2)

where we use the symbol x̌ to denote the absence of x. We observe that

ikµS̄(n)
µ1···µn

(p + k; k1, . . . , kn)γµSF(p)

= S̄(n)
µ1···µn

(p + k; k1, . . . , kn) − S̄(n)
µ1···µn

(p; k1 + k, k2, . . . , kn). (A.3)

On the other hand, (2.16) implies that

ikµ

n∑
j=1

S̄
(n)
µµ1···µ̌j ···µn

(p + kj ; k, k1, . . . , ǩj , . . . , kn)γµj
SF(p)

= 1

n

n∑
j=1

[
S̄

(n−1)
µ1···µ̌j ···µn

(p + kj + k; k1, . . . , ǩj , . . . , kn)

− S̄
(n−1)
µ1···µ̌j ···µn

(p + kj ; k1, . . . , ǩj , . . . , kn)
]
γµj

SF(p)

= S̄(n)
µ1···µn

(p; k1 + k, k2, . . . , kn) − S̄(n)
µ1···µn

(p; k1, k2, . . . , kn). (A.4)
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Thus, we obtain

i(n + 1)kµS̄(n+1)
µµ1···µn

(p; k, k1, . . . , kn)

= S̄(n)
µ1···µn

(p + k; k1, . . . , kn) − S̄(n)
µ1···µn

(p; k1, . . . , kn). (A.5)

The identity (2.17) may be regarded as a consequence of the gauge invariance of the
propagator G[A]. However, as a check of our formalism, it is worth to present a direct proof.
Let

ikµ1
1

∑
π{1,...,n}

im

m!

∫ 1

0
ds1 · · ·

∫ 1

0
dsm∂µ1 · · · ∂µm

S(n−m)
µm+1···µn


p +

m∑
j=1

sj kj ; km+1, . . . , kn




= Am + Bm, (A.6)

where Am represents the sum of the terms with the factor k
µ1
1 ∂µ1 and Bm all the other terms.

Observing that

k
µ1
1 ∂µ1F


p +

m∑
j=1

sj kj


 = d

ds1
F


p +

m∑
j=1

sj kj


 , (A.7)

we have

Am = −im−1

(m − 1)!

∑
π{2,...,n}

∫ 1

0
ds2 · · ·

∫ 1

0
dsm∂µ2 · · · ∂µm


S(n−m)

µm+1···µn


p + k1 +

m∑
j=2

sj kj ; km+1, . . . , kn




− S(n−m)
µm+1···µn


p +

m∑
j=2

sj kj ; km+1, . . . , kn





 . (A.8)

By making use of the identity (2.16), we have

Bm = im

m!

∑
π{2,...,n}

∫ 1

0
ds2 · · ·

∫ 1

0
dsm∂µ2 · · · ∂µm+1


S(n−m−1)

µm+2···µn


p + k1 +

m+1∑
j=2

sj kj ; km+2, . . . , kn




− S(n−m−1)
µm+2···µn


p +

m+1∑
j=2

sj kj ; km+2, . . . , kn





 . (A.9)

It follows that

Am = −Bm−1. (A.10)

Since

A0 = Bn = 0, (A.11)

the identity (2.17) is proved.
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